首页> 外文OA文献 >A digital signal processing architecture for soft-output MIMO lattice reduction aided detection
【2h】

A digital signal processing architecture for soft-output MIMO lattice reduction aided detection

机译:用于软输出MIMO晶格简化辅助检测的数字信号处理架构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many wireless communication standards now include the use of multiple transmit and receive antennas as a means of achieving increased throughput or spectral efficiency, including LTE, WiMAX and WiFi (IEEE 802.11n). The task of a detector for a multi-input multi-output (MIMO) communications channel is to separate the spatially mixed and noise-corrupted data streams, and to produce reliable estimates of the transmitted bits. The brute-force maximum-likelihood (ML) detector provides optimal error-rate performance, but is computationally infeasible when either dense symbol constellations or large numbers of antennas are used. Hardware implementation of ML receivers is therefore very challenging, leading to linear detectors based on well-known approaches such as zero forcing (ZF) or minimum mean-square error (MMSE) detection, or nonlinear methods such as successive interference cancellation (SIC), which offer manageable receiver complexity at the expense of highly suboptimal error-rate performance.
机译:现在,许多无线通信标准都包括使用多个发射和接收天线,以实现更高的吞吐量或频谱效率,包括LTE,WiMAX和WiFi(IEEE 802.11n)。用于多输入多输出(MIMO)通信信道的检测器的任务是分离空间混合和受噪声破坏的数据流,并生成传输位的可靠估计。蛮力最大似然(ML)检测器可提供最佳的误码率性能,但在使用密集符号星座图或使用大量天线时在计算上不可行。因此,ML接收器的硬件实现非常具有挑战性,导致线性检测器基于众所周知的方法(例如零强迫(ZF)或最小均方误差(MMSE)检测)或非线性方法(例如连续干扰消除(SIC)),它提供了可控的接收机复杂性,但代价是高度次优的误码率性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号